Graphene Currents…

A picture of an electrical current in graphene (marked by the red outline) showing a fluid-like flow imaged using a diamond-based quantum sensor. The grey portion is where the metal electrical contacts prevented collection of data. Courtesy: Walsworth and Yacoby research groups, Harvard and University of Maryland

Topics: Materials Science, Nanotechnology, Quantum Mechanics, Semiconductor Technology

A team led by researchers from Harvard University and the University of Maryland in the US has used defects in diamond to map the magnetic field generated by electrical currents in graphene. Their experiments reveal that currents in this atomically-thin form of carbon flow like a viscous fluid – a result that could provide fresh insights into the collective behavior of electrons in strongly-interacting quantum systems.

Graphene has many exceptional electrical properties. Among them is the fact that, at the point where its conduction and valence bands just touch each other (the Dirac point), it can support currents composed of electrons and an equal number of positively-charged holes, rather than electrons alone. In the present work, Ronald WalsworthAmir Yacoby and colleagues set out to establish whether these electron-hole plasmas (or Dirac fluids, as they are also known) flow smoothly, like electrons travelling through a metallic wire, or unevenly like water running through a pipe.

Diamond defects reveal viscous currents in graphene, Isabelle Dumé, Physics World

Published by reginaldgoodwin

Engineering Physics, Bachelors of Science, December 1984 Microelectronics & Photonics, Graduate Certificate, February 2016 Nanoengineering, Masters, December 2019 Nanoengineering, Ph.D., December 2021

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: