NEMS Photothermal Microscopy…

Topics: Microscopy, Nanotechnology, NEMS, Physics, Research

Single-molecule microscopy has become an indispensable tool for biochemical analysis. The capability of characterizing distinct properties of individual molecules without averaging has provided us with a different perspective for the existing scientific issues and phenomena. Recently, super-resolution fluorescence microscopy techniques have overcome the optical diffraction limit by the localization of molecule positions. However, the labeling process can potentially modify the intermolecular dynamics. Based on the highly sensitive nanomechanical photothermal microscopy reported previously, we propose optimizations on this label-free microscopy technique toward localization microscopy. A localization precision of 3 Å is achieved with gold nanoparticles, and the detection of polarization-dependent absorption is demonstrated, which opens the door for further improvement with polarization modulation imaging.

FIG. 2. (a) Schematic of the measurement setup. BE: beam expander. M: mirror. WP: waveplate. LP: linear polarizer. BS: beam splitter. PD: photodetector/power meter. DM: dichroic mirror. ID: iris diaphragm. CCD: charge-coupled device camera. APD: avalanche photodiode detector. (b) The transduction scheme of the trampoline resonator. (c) SEM image of the trampoline resonator.

J. Appl. Phys. 128, 134501 (2020);

Nanoelectromechanical photothermal polarization microscopy with 3 Å localization precision, Miao-Hsuan Chien and Silvan Schmid, Journal of Applied Physics

Published by reginaldgoodwin

Engineering Physics, Bachelors of Science, December 1984 Microelectronics & Photonics, Graduate Certificate, February 2016 Nanoengineering, Masters, December 2019 Nanoengineering, Ph.D., December 2021

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: