Quantum Dots and Diffusion…

QD tracking
3D tracking of QDs in A549 cells and dynamical analysis of their trajectories. Courtesy: Chinese Physics Letters

Topics: Biology, Diffusion, Quantum Dots, Quantum Mechanics

Quantum dots diffuse within living cells in a nearly two-dimensional fashion. This result, which was obtained using a new 3D microscopy technique that can track single particles, sheds fresh light on intracellular diffusion – a process that is critical for moving molecules around the cell and for mediating other important activities. According to study leader Hui Li, a biophysicist at the Chinese Academy of Sciences in Beijing and Beijing Normal University, the 2D motion he and his colleagues observed is robust and stems from the complex architectures of the flat “adherent” biological cells they studied.

Quantum dots make ideal probes for studying intracellular diffusion in living cells. They are similar in size to intracellular macromolecules and can be made to mimic biological materials relatively easily, by coating their surfaces with organic molecules. Previous studies, however, relied mainly on two-dimensional measurements of their movement, with the assumption that three-dimensional diffusion is an extension of 2D diffusion and is isotropic.

Quantum dots track two-dimensional diffusion in cells, Isabelle Dumé, Physics World

Published by reginaldgoodwin

Engineering Physics, Bachelors of Science, December 1984 Microelectronics & Photonics, Graduate Certificate, February 2016 Nanoengineering, Masters, December 2019 Nanoengineering, Ph.D., December 2021

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: